Hyperspectral Unmixing in Presence of Endmember Variability, Nonlinearity, or Mismodeling Effects

This paper presents three hyperspectral mixture models jointly with Bayesian algorithms for supervised hyperspectral unmixing. Based on the residual component analysis model, the proposed general formulation assumes the linear model to be corrupted by an additive term whose expression can be adapted...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 10 vom: 14. Okt., Seite 4565-79
1. Verfasser: Halimi, Abderrahim (VerfasserIn)
Weitere Verfasser: Honeine, Paul, Bioucas-Dias, Jose M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article