Toxicity of hydroxylated polychlorinated biphenyls (HO-PCBs) using the bioluminescent assay Microtox(®)
Hydroxylated polychlorinated biphenyls (HO-PCBs) are toxic contaminants which are produced in the environment by biological or abiotic oxidation of PCBs. The toxicity of a suite of 23 mono-hydroxylated derivatives of PCBs and 12 parent PCBs was determined using the bacterial bioluminescent assay Mic...
Veröffentlicht in: | Ecotoxicology (London, England). - 1992. - 25(2016), 7 vom: 13. Sept., Seite 1438-44 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2016
|
Zugriff auf das übergeordnete Werk: | Ecotoxicology (London, England) |
Schlagworte: | Journal Article Bioluminescent assay Hydroxylated polychlorinated biphenyl–HO-PCB Microtox® Structure–activity relationship–SAR Toxicity Environmental Pollutants Polychlorinated Biphenyls DFC2HB4I0K |
Zusammenfassung: | Hydroxylated polychlorinated biphenyls (HO-PCBs) are toxic contaminants which are produced in the environment by biological or abiotic oxidation of PCBs. The toxicity of a suite of 23 mono-hydroxylated derivatives of PCBs and 12 parent PCBs was determined using the bacterial bioluminescent assay Microtox(®). All HO-PCBs tested exhibited higher toxicity than the corresponding parent PCB, with effect concentration 50 % (EC50) ranging from 0.07 to 133 mg L(-1). The highest toxicities were recorded with 4-hydroxylated derivatives of di-chlorinated biphenyls (EC50 = 0.07-0.36 mg L(-1)) and 2-hydroxylated derivatives of tri-chlorinated biphenyls carrying a chlorine substituent on the phenolic ring (EC50 = 0.34-0.48 mg L(-1)). The toxicity of HO-PCBs generally decreased when the degree of chlorination increased. Consistently with this observation, a significant positive correlation was measured between toxicity (measured by EC50) and octanol-water partition coefficient (pK ow) for the HO-PCBs under study (Pearson's correlation coefficient, r = 0.74), which may be explained by the lower solubility and bioavailability generally associated with higher hydrophobicity. This study is the first one which assessed the toxicity of a suite of PCBs and HO-PCBs using the bioluminescent assay Microtox(®), showing an inverse correlation between toxicity and hydrophobicity |
---|---|
Beschreibung: | Date Completed 10.01.2017 Date Revised 30.09.2020 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1573-3017 |
DOI: | 10.1007/s10646-016-1693-z |