Control of the Handedness of Self-assemblies of Dipeptides by the Chirality of Phenylalanine and Steric Hindrance of Phenylglycine

Eight dipeptides, composed of phenylalanine and phenylglycine, that are able to self-assemble into twisted nanoribbons in deionized water are synthesized. The handedness of the nanoribbons is controlled by the chirality of the phenylalanine and the steric hindrance owing to the phenyl group of the p...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 32(2016), 29 vom: 26. Juli, Seite 7420-6
1. Verfasser: Lin, Shuwei (VerfasserIn)
Weitere Verfasser: Li, Yi, Li, Baozong, Yang, Yonggang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Dipeptides phenylglycine chloride 39478-47-2 Phenylalanine 47E5O17Y3R Glycine TE7660XO1C
Beschreibung
Zusammenfassung:Eight dipeptides, composed of phenylalanine and phenylglycine, that are able to self-assemble into twisted nanoribbons in deionized water are synthesized. The handedness of the nanoribbons is controlled by the chirality of the phenylalanine and the steric hindrance owing to the phenyl group of the phenylglycine. When the phenylalanine is at the C-terminal, π-π stacking by the phenyl groups, hydrogen bonding by the NH group of the phenylalanine, and hydrophobic associations of the alkyl chains control the stacking of the molecules. When phenylglycine is at the C-terminal, the chiral π-π stacking by the phenyl groups of the phenylalanines is suppressed. The hydrogen bonds formed by the NH groups of the phenylalanines had a greater contribution on forming organic self-assemblies than those formed by the NH groups of the phenylglycines
Beschreibung:Date Completed 05.06.2018
Date Revised 05.06.2018
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.6b01874