Generalized Sparse Learning of Linear Models Over the Complete Subgraph Feature Set

Supervised learning over graphs is an intrinsically difficult problem: simultaneous learning of relevant features from the complete subgraph feature set, in which enumerating all subgraph features occurring in given graphs is practically intractable due to combinatorial explosion. We show that 1) ex...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 3 vom: 17. März, Seite 617-624
1. Verfasser: Takigawa, Ichigaku (VerfasserIn)
Weitere Verfasser: Mamitsuka, Hiroshi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM26042725X
003 DE-627
005 20231224193400.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2016.2567399  |2 doi 
028 5 2 |a pubmed24n0868.xml 
035 |a (DE-627)NLM26042725X 
035 |a (NLM)27187949 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Takigawa, Ichigaku  |e verfasserin  |4 aut 
245 1 0 |a Generalized Sparse Learning of Linear Models Over the Complete Subgraph Feature Set 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.09.2018 
500 |a Date Revised 20.09.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Supervised learning over graphs is an intrinsically difficult problem: simultaneous learning of relevant features from the complete subgraph feature set, in which enumerating all subgraph features occurring in given graphs is practically intractable due to combinatorial explosion. We show that 1) existing graph supervised learning studies, such as Adaboost, LPBoost, and LARS/LASSO, can be viewed as variations of a branch-and-bound algorithm with simple bounds, which we call Morishita-Kudo bounds; 2) We present a direct sparse optimization algorithm for generalized problems with arbitrary twice-differentiable loss functions, to which Morishita-Kudo bounds cannot be directly applied; 3) We experimentally showed that i) our direct optimization method improves the convergence rate and stability, and ii) L1-penalized logistic regression (L1-LogReg) by our method identifies a smaller subgraph set, keeping the competitive performance, iii) the learned subgraphs by L1-LogReg are more size-balanced than competing methods, which are biased to small-sized subgraphs 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Mamitsuka, Hiroshi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 3 vom: 17. März, Seite 617-624  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:3  |g day:17  |g month:03  |g pages:617-624 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2016.2567399  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 3  |b 17  |c 03  |h 617-624