Generalized Sparse Learning of Linear Models Over the Complete Subgraph Feature Set
Supervised learning over graphs is an intrinsically difficult problem: simultaneous learning of relevant features from the complete subgraph feature set, in which enumerating all subgraph features occurring in given graphs is practically intractable due to combinatorial explosion. We show that 1) ex...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 3 vom: 17. März, Seite 617-624 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2017
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Online verfügbar |
Volltext |