Synthetic Self-Assembled Materials in Biological Environments
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 28(2016), 23 vom: 04. Juni, Seite 4576-92 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2016
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article biomaterials cellular imaging enzymes self-assembly therapeutics Biological Products Enzymes |
Zusammenfassung: | © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Synthetic self-assembly has long been recognized as an excellent approach for the formation of ordered structures on the nanoscale. Although the development of synthetic self-assembling materials has often been inspired by principles observed in nature (e.g., the assembly of lipids, DNA, proteins), until recently the self-assembly of synthetic molecules has mainly been investigated ex vivo. The past few years however, have witnessed the emergence of a research field in which synthetic, self-assembling systems are used that are capable of operating as bioactive materials in biological environments. Here, this up-and-coming field, which has the potential of becoming a key area in chemical biology and medicine, is reviewed. Two main categories of applications of self-assembly in biological environments are identified and discussed, namely therapeutic and imaging agents. Within these categories key concepts, such as triggers and molecular constraints for in vitro/in vivo self-assembly and the mode of interaction between the assemblies and the biological materials will be discussed |
---|---|
Beschreibung: | Date Completed 09.10.2018 Date Revised 30.09.2020 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201505025 |