Probabilistic Model for Robust Affine and Non-Rigid Point Set Matching

In this work, we propose a combinative strategy based on regression and clustering for solving point set matching problems under a Bayesian framework, in which the regression estimates the transformation from the model to the sceneand the clustering establishes the correspondence between two point s...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 2 vom: 01. Feb., Seite 371-384
1. Verfasser: Qu, Han-Bing (VerfasserIn)
Weitere Verfasser: Wang, Jia-Qiang, Li, Bin, Yu, Ming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM258831863
003 DE-627
005 20231224185852.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2016.2545659  |2 doi 
028 5 2 |a pubmed24n0862.xml 
035 |a (DE-627)NLM258831863 
035 |a (NLM)27019474 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qu, Han-Bing  |e verfasserin  |4 aut 
245 1 0 |a Probabilistic Model for Robust Affine and Non-Rigid Point Set Matching 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.08.2018 
500 |a Date Revised 23.08.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this work, we propose a combinative strategy based on regression and clustering for solving point set matching problems under a Bayesian framework, in which the regression estimates the transformation from the model to the sceneand the clustering establishes the correspondence between two point sets. The point set matching model is illustrated by a hierarchical directed graph, and the matching uncertainties are approximated by a coarse-to-fine variational inference algorithm. Furthermore, two Gaussian mixtures are proposed for the estimation of heteroscedastic noise and spurious outliers, and an isotropic or anisotropic covariance can be imposed on each mixture in terms of the transformed model points. The experimental results show that the proposed approach achieves comparable performance to state-of-the-art matching or registration algorithms in terms of both robustness and accuracy 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Wang, Jia-Qiang  |e verfasserin  |4 aut 
700 1 |a Li, Bin  |e verfasserin  |4 aut 
700 1 |a Yu, Ming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 2 vom: 01. Feb., Seite 371-384  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:2  |g day:01  |g month:02  |g pages:371-384 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2016.2545659  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 2  |b 01  |c 02  |h 371-384