Probabilistic Model for Robust Affine and Non-Rigid Point Set Matching
In this work, we propose a combinative strategy based on regression and clustering for solving point set matching problems under a Bayesian framework, in which the regression estimates the transformation from the model to the sceneand the clustering establishes the correspondence between two point s...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 2 vom: 01. Feb., Seite 371-384 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2017
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | In this work, we propose a combinative strategy based on regression and clustering for solving point set matching problems under a Bayesian framework, in which the regression estimates the transformation from the model to the sceneand the clustering establishes the correspondence between two point sets. The point set matching model is illustrated by a hierarchical directed graph, and the matching uncertainties are approximated by a coarse-to-fine variational inference algorithm. Furthermore, two Gaussian mixtures are proposed for the estimation of heteroscedastic noise and spurious outliers, and an isotropic or anisotropic covariance can be imposed on each mixture in terms of the transformed model points. The experimental results show that the proposed approach achieves comparable performance to state-of-the-art matching or registration algorithms in terms of both robustness and accuracy |
---|---|
Beschreibung: | Date Completed 23.08.2018 Date Revised 23.08.2018 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1939-3539 |
DOI: | 10.1109/TPAMI.2016.2545659 |