Nuclear Norm Based Matrix Regression with Applications to Face Recognition with Occlusion and Illumination Changes

Recently, regression analysis has become a popular tool for face recognition. Most existing regression methods use the one-dimensional, pixel-based error model, which characterizes the representation error individually, pixel by pixel, and thus neglects the two-dimensional structure of the error ima...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 1 vom: 01. Jan., Seite 156-171
1. Verfasser: Yang, Jian (VerfasserIn)
Weitere Verfasser: Luo, Lei, Qian, Jianjun, Tai, Ying, Zhang, Fanlong, Xu, Yong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM257990658
003 DE-627
005 20231224184032.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0860.xml 
035 |a (DE-627)NLM257990658 
035 |a (NLM)26930675 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Jian  |e verfasserin  |4 aut 
245 1 0 |a Nuclear Norm Based Matrix Regression with Applications to Face Recognition with Occlusion and Illumination Changes 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.08.2018 
500 |a Date Revised 06.08.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recently, regression analysis has become a popular tool for face recognition. Most existing regression methods use the one-dimensional, pixel-based error model, which characterizes the representation error individually, pixel by pixel, and thus neglects the two-dimensional structure of the error image. We observe that occlusion and illumination changes generally lead, approximately, to a low-rank error image. In order to make use of this low-rank structural information, this paper presents a two-dimensional image-matrix-based error model, namely, nuclear norm based matrix regression (NMR), for face representation and classification. NMR uses the minimal nuclear norm of representation error image as a criterion, and the alternating direction method of multipliers (ADMM) to calculate the regression coefficients. We further develop a fast ADMM algorithm to solve the approximate NMR model and show it has a quadratic rate of convergence. We experiment using five popular face image databases: the Extended Yale B, AR, EURECOM, Multi-PIE and FRGC. Experimental results demonstrate the performance advantage of NMR over the state-of-the-art regression-based methods for face recognition in the presence of occlusion and illumination variations 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Luo, Lei  |e verfasserin  |4 aut 
700 1 |a Qian, Jianjun  |e verfasserin  |4 aut 
700 1 |a Tai, Ying  |e verfasserin  |4 aut 
700 1 |a Zhang, Fanlong  |e verfasserin  |4 aut 
700 1 |a Xu, Yong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 1 vom: 01. Jan., Seite 156-171  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:1  |g day:01  |g month:01  |g pages:156-171 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 1  |b 01  |c 01  |h 156-171