Nuclear Norm Based Matrix Regression with Applications to Face Recognition with Occlusion and Illumination Changes

Recently, regression analysis has become a popular tool for face recognition. Most existing regression methods use the one-dimensional, pixel-based error model, which characterizes the representation error individually, pixel by pixel, and thus neglects the two-dimensional structure of the error ima...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 1 vom: 01. Jan., Seite 156-171
Auteur principal: Yang, Jian (Auteur)
Autres auteurs: Luo, Lei, Qian, Jianjun, Tai, Ying, Zhang, Fanlong, Xu, Yong
Format: Article en ligne
Langue:English
Publié: 2017
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, Non-U.S. Gov't
Description
Résumé:Recently, regression analysis has become a popular tool for face recognition. Most existing regression methods use the one-dimensional, pixel-based error model, which characterizes the representation error individually, pixel by pixel, and thus neglects the two-dimensional structure of the error image. We observe that occlusion and illumination changes generally lead, approximately, to a low-rank error image. In order to make use of this low-rank structural information, this paper presents a two-dimensional image-matrix-based error model, namely, nuclear norm based matrix regression (NMR), for face representation and classification. NMR uses the minimal nuclear norm of representation error image as a criterion, and the alternating direction method of multipliers (ADMM) to calculate the regression coefficients. We further develop a fast ADMM algorithm to solve the approximate NMR model and show it has a quadratic rate of convergence. We experiment using five popular face image databases: the Extended Yale B, AR, EURECOM, Multi-PIE and FRGC. Experimental results demonstrate the performance advantage of NMR over the state-of-the-art regression-based methods for face recognition in the presence of occlusion and illumination variations
Description:Date Completed 06.08.2018
Date Revised 06.08.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539