Multi-View Discriminant Analysis

In many computer vision systems, the same object can be observed at varying viewpoints or even by different sensors, which brings in the challenging demand for recognizing objects from distinct even heterogeneous views. In this work we propose a Multi-view Discriminant Analysis (MvDA) approach, whic...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 1 vom: 04. Jan., Seite 188-94
1. Verfasser: Kan, Meina (VerfasserIn)
Weitere Verfasser: Shan, Shiguang, Zhang, Haihong, Lao, Shihong, Chen, Xilin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM255463596
003 DE-627
005 20231224174540.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2015.2435740  |2 doi 
028 5 2 |a pubmed24n0851.xml 
035 |a (DE-627)NLM255463596 
035 |a (NLM)26656586 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kan, Meina  |e verfasserin  |4 aut 
245 1 0 |a Multi-View Discriminant Analysis 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.03.2016 
500 |a Date Revised 18.03.2022 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In many computer vision systems, the same object can be observed at varying viewpoints or even by different sensors, which brings in the challenging demand for recognizing objects from distinct even heterogeneous views. In this work we propose a Multi-view Discriminant Analysis (MvDA) approach, which seeks for a single discriminant common space for multiple views in a non-pairwise manner by jointly learning multiple view-specific linear transforms. Specifically, our MvDA is formulated to jointly solve the multiple linear transforms by optimizing a generalized Rayleigh quotient, i.e., maximizing the between-class variations and minimizing the within-class variations from both intra-view and inter-view in the common space. By reformulating this problem as a ratio trace problem, the multiple linear transforms are achieved analytically and simultaneously through generalized eigenvalue decomposition. Furthermore, inspired by the observation that different views share similar data structures, a constraint is introduced to enforce the view-consistency of the multiple linear transforms. The proposed method is evaluated on three tasks: face recognition across pose, photo versus. sketch face recognition, and visual light image versus near infrared image face recognition on Multi-PIE, CUFSF and HFB databases respectively. Extensive experiments show that our MvDA achieves significant improvements compared with the best known results 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Shan, Shiguang  |e verfasserin  |4 aut 
700 1 |a Zhang, Haihong  |e verfasserin  |4 aut 
700 1 |a Lao, Shihong  |e verfasserin  |4 aut 
700 1 |a Chen, Xilin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 38(2016), 1 vom: 04. Jan., Seite 188-94  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:38  |g year:2016  |g number:1  |g day:04  |g month:01  |g pages:188-94 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2015.2435740  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2016  |e 1  |b 04  |c 01  |h 188-94