Multi-View Discriminant Analysis
In many computer vision systems, the same object can be observed at varying viewpoints or even by different sensors, which brings in the challenging demand for recognizing objects from distinct even heterogeneous views. In this work we propose a Multi-view Discriminant Analysis (MvDA) approach, whic...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 1 vom: 04. Jan., Seite 188-94 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2016
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | In many computer vision systems, the same object can be observed at varying viewpoints or even by different sensors, which brings in the challenging demand for recognizing objects from distinct even heterogeneous views. In this work we propose a Multi-view Discriminant Analysis (MvDA) approach, which seeks for a single discriminant common space for multiple views in a non-pairwise manner by jointly learning multiple view-specific linear transforms. Specifically, our MvDA is formulated to jointly solve the multiple linear transforms by optimizing a generalized Rayleigh quotient, i.e., maximizing the between-class variations and minimizing the within-class variations from both intra-view and inter-view in the common space. By reformulating this problem as a ratio trace problem, the multiple linear transforms are achieved analytically and simultaneously through generalized eigenvalue decomposition. Furthermore, inspired by the observation that different views share similar data structures, a constraint is introduced to enforce the view-consistency of the multiple linear transforms. The proposed method is evaluated on three tasks: face recognition across pose, photo versus. sketch face recognition, and visual light image versus near infrared image face recognition on Multi-PIE, CUFSF and HFB databases respectively. Extensive experiments show that our MvDA achieves significant improvements compared with the best known results |
---|---|
Beschreibung: | Date Completed 30.03.2016 Date Revised 18.03.2022 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1939-3539 |
DOI: | 10.1109/TPAMI.2015.2435740 |