Morphology-dependent antimicrobial activity of Cu/CuxO nanoparticles
Cu/CuxO nanoparticles (NPs) with different morphologies have been synthesized with glucose as a reducing agent. The X-ray diffraction and Scanning electron microscopy imaging show that the Cu/CuxO NPs have fine crystalline peaks with homogeneous polyhedral, flower-like, and thumbtack-like morphologi...
Veröffentlicht in: | Ecotoxicology (London, England). - 1992. - 24(2015), 10 vom: 25. Dez., Seite 2067-72 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2015
|
Zugriff auf das übergeordnete Werk: | Ecotoxicology (London, England) |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Antimicrobial activity Copper nanoparticles Morphology Surface free energy Anti-Infective Agents Copper 789U1901C5 cuprous oxide mehr... |
Zusammenfassung: | Cu/CuxO nanoparticles (NPs) with different morphologies have been synthesized with glucose as a reducing agent. The X-ray diffraction and Scanning electron microscopy imaging show that the Cu/CuxO NPs have fine crystalline peaks with homogeneous polyhedral, flower-like, and thumbtack-like morphologies. Their antimicrobial activities were evaluated on inactivation of Escherichia coli using a fluorescence-based live/dead staining method. Dissolution of copper ions from these NPs was determined. Results demonstrated a significant growth inhibition for these NPs with different morphologies, and the flower-like Cu/CuxO NPs were the most effective form, where more copper ions were dissolved into the culture media. Surface free energy calculations based on first-principle density functional theory show that different crystal facets of the copper NPs have diverse surface energy, indicating the highest reactivity of the flower-like NPs, which is consistent with the results from the dissolution study and antimicrobial activity test. Together, these results suggest that the difference between the surface free energy may be a cause for their morphology-dependent antimicrobial activity |
---|---|
Beschreibung: | Date Completed 07.09.2016 Date Revised 30.09.2020 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1573-3017 |
DOI: | 10.1007/s10646-015-1554-1 |