Iterative Discovery of Multiple AlternativeClustering Views

Complex data can be grouped and interpreted in many different ways. Most existing clustering algorithms, however, only find one clustering solution, and provide little guidance to data analysts who may not be satisfied with that single clustering and may wish to explore alternatives. We introduce a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 36(2014), 7 vom: 01. Juli, Seite 1340-53
1. Verfasser: Donglin Niu (VerfasserIn)
Weitere Verfasser: Dy, Jennifer G, Jordan, Michael I
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM252591836
003 DE-627
005 20231224164433.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2013.180  |2 doi 
028 5 2 |a pubmed24n0842.xml 
035 |a (DE-627)NLM252591836 
035 |a (NLM)26353307 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Donglin Niu  |e verfasserin  |4 aut 
245 1 0 |a Iterative Discovery of Multiple AlternativeClustering Views 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.11.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Complex data can be grouped and interpreted in many different ways. Most existing clustering algorithms, however, only find one clustering solution, and provide little guidance to data analysts who may not be satisfied with that single clustering and may wish to explore alternatives. We introduce a novel approach that provides several clustering solutions to the user for the purposes of exploratory data analysis. Our approach additionally captures the notion that alternative clusterings may reside in different subspaces (or views). We present an algorithm that simultaneously finds these subspaces and the corresponding clusterings. The algorithm is based on an optimization procedure that incorporates terms for cluster quality and novelty relative to previously discovered clustering solutions. We present a range of experiments that compare our approach to alternatives and explore the connections between simultaneous and iterative modes of discovery of multiple clusterings 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Dy, Jennifer G  |e verfasserin  |4 aut 
700 1 |a Jordan, Michael I  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 36(2014), 7 vom: 01. Juli, Seite 1340-53  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:36  |g year:2014  |g number:7  |g day:01  |g month:07  |g pages:1340-53 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2013.180  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2014  |e 7  |b 01  |c 07  |h 1340-53