Iterative Discovery of Multiple AlternativeClustering Views

Complex data can be grouped and interpreted in many different ways. Most existing clustering algorithms, however, only find one clustering solution, and provide little guidance to data analysts who may not be satisfied with that single clustering and may wish to explore alternatives. We introduce a...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 36(2014), 7 vom: 01. Juli, Seite 1340-53
Auteur principal: Donglin Niu (Auteur)
Autres auteurs: Dy, Jennifer G, Jordan, Michael I
Format: Article en ligne
Langue:English
Publié: 2014
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
Description
Résumé:Complex data can be grouped and interpreted in many different ways. Most existing clustering algorithms, however, only find one clustering solution, and provide little guidance to data analysts who may not be satisfied with that single clustering and may wish to explore alternatives. We introduce a novel approach that provides several clustering solutions to the user for the purposes of exploratory data analysis. Our approach additionally captures the notion that alternative clusterings may reside in different subspaces (or views). We present an algorithm that simultaneously finds these subspaces and the corresponding clusterings. The algorithm is based on an optimization procedure that incorporates terms for cluster quality and novelty relative to previously discovered clustering solutions. We present a range of experiments that compare our approach to alternatives and explore the connections between simultaneous and iterative modes of discovery of multiple clusterings
Description:Date Completed 27.11.2015
Date Revised 10.09.2015
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2013.180