|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM25259178X |
003 |
DE-627 |
005 |
20231224164433.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2015 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2014.2353626
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0842.xml
|
035 |
|
|
|a (DE-627)NLM25259178X
|
035 |
|
|
|a (NLM)26353302
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Průsa, Daniel
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Universality of the Local Marginal Polytope
|
264 |
|
1 |
|c 2015
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 24.11.2015
|
500 |
|
|
|a Date Revised 10.09.2015
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a We show that solving the LP relaxation of the min-sum labeling problem (also known as MAP inference problem in graphical models, discrete energy minimization, or valued constraint satisfaction) is not easier than solving any linear program. Precisely, every polytope is linear-time representable by a local marginal polytope and every LP can be reduced in linear time to a linear optimization (allowing infinite costs) over a local marginal polytope. The reduction can be done (though with a higher time complexity) even if the local marginal polytope is restricted to have a planar structure
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Werner, Tomás
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 37(2015), 4 vom: 01. Apr., Seite 898-904
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:37
|g year:2015
|g number:4
|g day:01
|g month:04
|g pages:898-904
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2014.2353626
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 37
|j 2015
|e 4
|b 01
|c 04
|h 898-904
|