Universality of the Local Marginal Polytope

We show that solving the LP relaxation of the min-sum labeling problem (also known as MAP inference problem in graphical models, discrete energy minimization, or valued constraint satisfaction) is not easier than solving any linear program. Precisely, every polytope is linear-time representable by a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 37(2015), 4 vom: 01. Apr., Seite 898-904
1. Verfasser: Průsa, Daniel (VerfasserIn)
Weitere Verfasser: Werner, Tomás
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:We show that solving the LP relaxation of the min-sum labeling problem (also known as MAP inference problem in graphical models, discrete energy minimization, or valued constraint satisfaction) is not easier than solving any linear program. Precisely, every polytope is linear-time representable by a local marginal polytope and every LP can be reduced in linear time to a linear optimization (allowing infinite costs) over a local marginal polytope. The reduction can be done (though with a higher time complexity) even if the local marginal polytope is restricted to have a planar structure
Beschreibung:Date Completed 24.11.2015
Date Revised 10.09.2015
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2014.2353626