Surface Activity and Aggregation Behavior of Siloxane-Based Ionic Liquids in Aqueous Solution

Six novel siloxane-based surface-active ionic liquids (SAILs)--siloxane ammonium carboxylate [Si(n)N(2)-CA(1), (n = 3, 4)]--were designed and synthesized. Their melting points, surface activities, and self-aggregation behavior in aqueous solution were studied. The results showed that because of the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 31(2015), 30 vom: 04. Aug., Seite 8235-42
1. Verfasser: Wang, Guoyong (VerfasserIn)
Weitere Verfasser: Li, Ping, Du, Zhiping, Wang, Wanxu, Li, Guojin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Six novel siloxane-based surface-active ionic liquids (SAILs)--siloxane ammonium carboxylate [Si(n)N(2)-CA(1), (n = 3, 4)]--were designed and synthesized. Their melting points, surface activities, and self-aggregation behavior in aqueous solution were studied. The results showed that because of the bulky hydrophobic siloxane chains at the end of the tail, all six siloxane-based SAILs are room-temperature ionic liquids (RT-SAILs). The introduction of the siloxane group can reduce the melting point of ionic liquids to below room temperature and can promote the micellization and aggregation behavior more efficiently. These siloxane-based SAILs can greatly reduce the surface tension of water, as shown by the critical aggregation concentration (γCAC) values of 20 mN·m(-1); all six siloxane RT-SAILs can form a vesicle spontaneously in aqueous solution, indicating potential uses as model systems for biomembranes and vehicles for drug delivery
Beschreibung:Date Completed 09.10.2015
Date Revised 04.08.2015
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.5b02062