Learning a Nonnegative Sparse Graph for Linear Regression

Previous graph-based semisupervised learning (G-SSL) methods have the following drawbacks: 1) they usually predefine the graph structure and then use it to perform label prediction, which cannot guarantee an overall optimum and 2) they only focus on the label prediction or the graph structure constr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 9 vom: 25. Sept., Seite 2760-71
1. Verfasser: Fang, Xiaozhao (VerfasserIn)
Weitere Verfasser: Xu, Yong, Li, Xuelong, Lai, Zhihui, Wong, Wai Keung
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't