Learning a Nonnegative Sparse Graph for Linear Regression

Previous graph-based semisupervised learning (G-SSL) methods have the following drawbacks: 1) they usually predefine the graph structure and then use it to perform label prediction, which cannot guarantee an overall optimum and 2) they only focus on the label prediction or the graph structure constr...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 9 vom: 25. Sept., Seite 2760-71
Auteur principal: Fang, Xiaozhao (Auteur)
Autres auteurs: Xu, Yong, Li, Xuelong, Lai, Zhihui, Wong, Wai Keung
Format: Article en ligne
Langue:English
Publié: 2015
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article Research Support, Non-U.S. Gov't