Cosolute effects on amyloid aggregation in a nondiffusion limited regime : intrinsic osmolyte properties and the volume exclusion principle

The effects of cosolutes on amyloid aggregation kinetics in vivo are critical and not fully understood. To explore the effects of cosolute additives, the in vitro behavior of destabilizing and stabilizing osmolytes with polymer cosolutes on the aggregation of a model amyloid, human insulin, is probe...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 31(2015), 14 vom: 14. Apr., Seite 4246-54
1. Verfasser: Murray, Brian (VerfasserIn)
Weitere Verfasser: Rosenthal, Joseph, Zheng, Zhongli, Isaacson, David, Zhu, Yingxi, Belfort, Georges
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Amyloid Insulin Protein Aggregates Guanidine JU58VJ6Y3B
Beschreibung
Zusammenfassung:The effects of cosolutes on amyloid aggregation kinetics in vivo are critical and not fully understood. To explore the effects of cosolute additives, the in vitro behavior of destabilizing and stabilizing osmolytes with polymer cosolutes on the aggregation of a model amyloid, human insulin, is probed using experiments coupled with an amyloid aggregation reaction model. The destabilizing osmolyte, guanidine hydrochloride (GuHCl), induces biphasic behavior on the amyloid aggregation rate exhibited by an enhancement of the aggregation kinetics at low concentrations of GuHCl (<0.6 M) and a reduction in kinetics at higher GuHCl concentrations. Stabilizing osmolytes, glycerol, sorbitol and trimethylamine N-oxide, slow the rate of aggregation by reducing the rate of monomer unfolding. Polymer cosolutes, polyvinylpyrrolidone 3.5 kDa and 40 kDa, delay amyloid aggregation mainly through a decrease in the nucleation reaction. These results are in good agreement with the volume exclusion principle for polymer crowding and supports the need to include conformational rearrangement of monomers prior to nucleation. Using fluorescence correlation spectroscopy, we demonstrate that amyloid aggregation is nondiffusion limited, except during fibril accumulation in the presence of high concentrations of long chain polymers. Lastly, the neutral surface area of osmolytes correlates well with the time to initiate fibril formation, tlag, which implicates an intrinsic osmolyte property underlying preferential interactions
Beschreibung:Date Completed 07.03.2016
Date Revised 14.04.2015
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.5b00254