|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM247017272 |
003 |
DE-627 |
005 |
20231224144318.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2015 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.5b00127
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0823.xml
|
035 |
|
|
|a (DE-627)NLM247017272
|
035 |
|
|
|a (NLM)25764296
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Rembert, Kelvin B
|e verfasserin
|4 aut
|
245 |
1 |
3 |
|a An NH moiety is not required for anion binding to amides in aqueous solution
|
264 |
|
1 |
|c 2015
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 21.12.2015
|
500 |
|
|
|a Date Revised 24.03.2015
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Herein, we use a combination of thermodynamic and spectroscopic measurements to investigate the interactions of Hofmeister anions with a thermoresponsive polymer, poly(N,N-diethylacrylamide) (PDEA). This amide-based polymer does not contain an NH moiety in its chemical structure and, thus, can serve as a model to test if anions bind to amides in the absence of an NH site. The lower critical solution temperature (LCST) of PDEA was measured as a function of the concentration for 11 sodium salts in aqueous solutions, and followed a direct Hofmeister series for the ability of anions to precipitate the polymer. More strongly hydrated anions (CO3(2-), SO4(2-), S2O3(2-), H2PO4(-), F(-), and Cl(-)) linearly decreased the LCST of the polymer with increasing the salt concentration. Weakly hydrated anions (SCN(-), ClO4(-), I(-), NO3(-), and Br(-)) increased the LCST at lower salt concentrations but salted the polymer out at higher salt concentrations. Proton nuclear magnetic resonance (NMR) was used to probe the mechanism of the salting-in effect and showed apparent binding between weakly hydrated anions (SCN(-) and I(-)) and the α protons of the polymer backbone. Additional experiments performed by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy found little change in the amide I band upon the addition of salt, which is consistent with very limited, if any, interactions between the salt ions and the carbonyl moiety of the amide. These results support a molecular mechanism for ion-specific effects on proteins and model amides that does not specifically require an NH group to interact with the anions for the salting-in effect to occur
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
650 |
|
7 |
|a Amides
|2 NLM
|
650 |
|
7 |
|a Anions
|2 NLM
|
650 |
|
7 |
|a Solutions
|2 NLM
|
700 |
1 |
|
|a Okur, Halil I
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hilty, Christian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cremer, Paul S
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 31(2015), 11 vom: 24. März, Seite 3459-64
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:31
|g year:2015
|g number:11
|g day:24
|g month:03
|g pages:3459-64
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.5b00127
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 31
|j 2015
|e 11
|b 24
|c 03
|h 3459-64
|