An NH moiety is not required for anion binding to amides in aqueous solution

Herein, we use a combination of thermodynamic and spectroscopic measurements to investigate the interactions of Hofmeister anions with a thermoresponsive polymer, poly(N,N-diethylacrylamide) (PDEA). This amide-based polymer does not contain an NH moiety in its chemical structure and, thus, can serve...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 31(2015), 11 vom: 24. März, Seite 3459-64
1. Verfasser: Rembert, Kelvin B (VerfasserIn)
Weitere Verfasser: Okur, Halil I, Hilty, Christian, Cremer, Paul S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Amides Anions Solutions
Beschreibung
Zusammenfassung:Herein, we use a combination of thermodynamic and spectroscopic measurements to investigate the interactions of Hofmeister anions with a thermoresponsive polymer, poly(N,N-diethylacrylamide) (PDEA). This amide-based polymer does not contain an NH moiety in its chemical structure and, thus, can serve as a model to test if anions bind to amides in the absence of an NH site. The lower critical solution temperature (LCST) of PDEA was measured as a function of the concentration for 11 sodium salts in aqueous solutions, and followed a direct Hofmeister series for the ability of anions to precipitate the polymer. More strongly hydrated anions (CO3(2-), SO4(2-), S2O3(2-), H2PO4(-), F(-), and Cl(-)) linearly decreased the LCST of the polymer with increasing the salt concentration. Weakly hydrated anions (SCN(-), ClO4(-), I(-), NO3(-), and Br(-)) increased the LCST at lower salt concentrations but salted the polymer out at higher salt concentrations. Proton nuclear magnetic resonance (NMR) was used to probe the mechanism of the salting-in effect and showed apparent binding between weakly hydrated anions (SCN(-) and I(-)) and the α protons of the polymer backbone. Additional experiments performed by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy found little change in the amide I band upon the addition of salt, which is consistent with very limited, if any, interactions between the salt ions and the carbonyl moiety of the amide. These results support a molecular mechanism for ion-specific effects on proteins and model amides that does not specifically require an NH group to interact with the anions for the salting-in effect to occur
Beschreibung:Date Completed 21.12.2015
Date Revised 24.03.2015
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.5b00127