Ultra-thin optical grade scCVD diamond as X-ray beam position monitor
Results of measurements made at the SIRIUS beamline of the SOLEIL synchrotron for a new X-ray beam position monitor based on a super-thin single crystal of diamond grown by chemical vapor deposition (CVD) are presented. This detector is a quadrant electrode design processed on a 3 µm-thick membrane...
Veröffentlicht in: | Journal of synchrotron radiation. - 1994. - 21(2014), Pt 6 vom: 01. Nov., Seite 1217-23 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2014
|
Zugriff auf das übergeordnete Werk: | Journal of synchrotron radiation |
Schlagworte: | Journal Article X-ray beam position monitor XBIC XBPM ultra-thin optical-grade single-crystal CVD diamond |
Zusammenfassung: | Results of measurements made at the SIRIUS beamline of the SOLEIL synchrotron for a new X-ray beam position monitor based on a super-thin single crystal of diamond grown by chemical vapor deposition (CVD) are presented. This detector is a quadrant electrode design processed on a 3 µm-thick membrane obtained by argon-oxygen plasma etching the central area of a CVD-grown diamond plate of 60 µm thickness. The membrane transmits more than 50% of the incident 1.3 keV energy X-ray beam. The diamond plate was of moderate purity (∼1 p.p.m. nitrogen), but the X-ray beam induced current (XBIC) measurements nevertheless showed a photo-charge collection efficiency approaching 100% for an electric field of 2 V µm(-1), corresponding to an applied bias voltage of only 6 V. XBIC mapping of the membrane showed an inhomogeneity of more than 10% across the membrane, corresponding to the measured variation in the thickness of the diamond plate before the plasma etching process. The measured XBIC signal-to-dark-current ratio of the device was greater than 10(5), and the X-ray beam position resolution of the device was better than a micrometer for a 1 kHz sampling rate |
---|---|
Beschreibung: | Date Completed 30.03.2015 Date Revised 25.10.2014 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1600-5775 |
DOI: | 10.1107/S1600577514016191 |