Bayesian inference of conformational state populations from computational models and sparse experimental observables

© 2014 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 35(2014), 30 vom: 15. Nov., Seite 2215-24
1. Verfasser: Voelz, Vincent A (VerfasserIn)
Weitere Verfasser: Zhou, Guangfeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Bayesian inference NMR spectroscopy molecular dynamics quantum chemistry structure determination Lactones Macrocyclic Compounds Macrolides
LEADER 01000naa a22002652 4500
001 NLM242174280
003 DE-627
005 20231224125833.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.23738  |2 doi 
028 5 2 |a pubmed24n0807.xml 
035 |a (DE-627)NLM242174280 
035 |a (NLM)25250719 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Voelz, Vincent A  |e verfasserin  |4 aut 
245 1 0 |a Bayesian inference of conformational state populations from computational models and sparse experimental observables 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.06.2015 
500 |a Date Revised 20.10.2014 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2014 Wiley Periodicals, Inc. 
520 |a We present a Bayesian inference approach to estimating conformational state populations from a combination of molecular modeling and sparse experimental data. Unlike alternative approaches, our method is designed for use with small molecules and emphasizes high-resolution structural models, using inferential structure determination with reference potentials, and Markov Chain Monte Carlo to sample the posterior distribution of conformational states. As an application of the method, we determine solution-state conformational populations of the 14-membered macrocycle cineromycin B, using a combination of previously published sparse Nuclear Magnetic Resonance (NMR) observables and replica-exchange molecular dynamic/Quantum Mechanical (QM)-refined conformational ensembles. Our results agree better with experimental data compared to previous modeling efforts. Bayes factors are calculated to quantify the consistency of computational modeling with experiment, and the relative importance of reference potentials and other model parameters 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a Bayesian inference 
650 4 |a NMR spectroscopy 
650 4 |a molecular dynamics 
650 4 |a quantum chemistry 
650 4 |a structure determination 
650 7 |a Lactones  |2 NLM 
650 7 |a Macrocyclic Compounds  |2 NLM 
650 7 |a Macrolides  |2 NLM 
700 1 |a Zhou, Guangfeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 35(2014), 30 vom: 15. Nov., Seite 2215-24  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:35  |g year:2014  |g number:30  |g day:15  |g month:11  |g pages:2215-24 
856 4 0 |u http://dx.doi.org/10.1002/jcc.23738  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2014  |e 30  |b 15  |c 11  |h 2215-24