Bayesian inference of conformational state populations from computational models and sparse experimental observables

© 2014 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 35(2014), 30 vom: 15. Nov., Seite 2215-24
1. Verfasser: Voelz, Vincent A (VerfasserIn)
Weitere Verfasser: Zhou, Guangfeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Bayesian inference NMR spectroscopy molecular dynamics quantum chemistry structure determination Lactones Macrocyclic Compounds Macrolides
Beschreibung
Zusammenfassung:© 2014 Wiley Periodicals, Inc.
We present a Bayesian inference approach to estimating conformational state populations from a combination of molecular modeling and sparse experimental data. Unlike alternative approaches, our method is designed for use with small molecules and emphasizes high-resolution structural models, using inferential structure determination with reference potentials, and Markov Chain Monte Carlo to sample the posterior distribution of conformational states. As an application of the method, we determine solution-state conformational populations of the 14-membered macrocycle cineromycin B, using a combination of previously published sparse Nuclear Magnetic Resonance (NMR) observables and replica-exchange molecular dynamic/Quantum Mechanical (QM)-refined conformational ensembles. Our results agree better with experimental data compared to previous modeling efforts. Bayes factors are calculated to quantify the consistency of computational modeling with experiment, and the relative importance of reference potentials and other model parameters
Beschreibung:Date Completed 19.06.2015
Date Revised 20.10.2014
published: Print-Electronic
Citation Status MEDLINE
ISSN:1096-987X
DOI:10.1002/jcc.23738