Heat transfer enhancement accompanying Leidenfrost state suppression at ultrahigh temperatures

The well-known Leidenfrost effect is the formation of a vapor layer between a liquid and an underlying hot surface. This insulating vapor layer severely degrades heat transfer and results in surface dryout. We measure the heat transfer enhancement and dryout prevention benefits accompanying electros...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 30(2014), 40 vom: 14. Okt., Seite 12074-81
1. Verfasser: Shahriari, Arjang (VerfasserIn)
Weitere Verfasser: Wurz, Jillian, Bahadur, Vaibhav
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM24194628X
003 DE-627
005 20231224125335.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1021/la502456d  |2 doi 
028 5 2 |a pubmed24n0806.xml 
035 |a (DE-627)NLM24194628X 
035 |a (NLM)25225852 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shahriari, Arjang  |e verfasserin  |4 aut 
245 1 0 |a Heat transfer enhancement accompanying Leidenfrost state suppression at ultrahigh temperatures 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.05.2015 
500 |a Date Revised 14.10.2014 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The well-known Leidenfrost effect is the formation of a vapor layer between a liquid and an underlying hot surface. This insulating vapor layer severely degrades heat transfer and results in surface dryout. We measure the heat transfer enhancement and dryout prevention benefits accompanying electrostatic suppression of the Leidenfrost state. Interfacial electric fields in the vapor layer can attract liquid toward the surface and promote wetting. This principle can suppress dryout even at ultrahigh temperatures exceeding 500 °C, which is more than 8 times the Leidenfrost superheat for organic solvents. Robust Leidenfrost state suppression is observed for a variety of liquids, ranging from low electrical conductivity organic solvents to electrically conducting salt solutions. Elimination of the vapor layer increases heat dissipation capacity by more than 1 order of magnitude. Heat removal capacities exceeding 500 W/cm(2) are measured, which is 5 times the critical heat flux (CHF) of water on common engineering surfaces. Furthermore, the heat transfer rate can be electrically controlled by the applied voltage. The underlying science is explained via a multiphysics analytical model which captures the coupled electrostatic-fluid-thermal transport phenomena underlying electrostatic Leidenfrost state suppression. Overall, this work uncovers the physics underlying dryout prevention and demonstrates electrically tunable boiling heat transfer with ultralow power consumption 
650 4 |a Journal Article 
700 1 |a Wurz, Jillian  |e verfasserin  |4 aut 
700 1 |a Bahadur, Vaibhav  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 30(2014), 40 vom: 14. Okt., Seite 12074-81  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:30  |g year:2014  |g number:40  |g day:14  |g month:10  |g pages:12074-81 
856 4 0 |u http://dx.doi.org/10.1021/la502456d  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 30  |j 2014  |e 40  |b 14  |c 10  |h 12074-81