Insights into transcriptional regulation of β-D-N-acetylhexosaminidase, an N-glycan-processing enzyme involved in ripening-associated fruit softening
© The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Veröffentlicht in: | Journal of experimental botany. - 1985. - 65(2014), 20 vom: 16. Nov., Seite 5835-48 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2014
|
Zugriff auf das übergeordnete Werk: | Journal of experimental botany |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Fruit ripening RIN SlASR1 fruit ripening-specific promoter transcriptional regulation. β-Hex Ethylenes Glucans mehr... |
Zusammenfassung: | © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. Tomato (Solanum lycopersicum) fruit ripening-specific N-glycan processing enzyme, β-D-N-acetylhexosaminidase (β-Hex), plays an important role in the ripening-associated fruit-softening process. However, the regulation of fruit ripening-specific expression of β-Hex is not well understood. We have identified and functionally characterized the fruit ripening-specific promoter of β-Hex and provided insights into its transcriptional regulation during fruit ripening. Our results demonstrate that RIPENING INHIBITOR (RIN), a global fruit ripening regulator, and ABSCISIC ACID STRESS RIPENING 1 (SlASR1), a poorly characterized ripening-related protein, are the transcriptional regulators of β-Hex. Both RIN and SlASR1 directly bound to the β-Hex promoter fragments containing CArG and C₂₋₃(C/G)A cis-acting elements, the binding sites for RIN and SlASR1, respectively. Moreover, β-Hex expression/promoter activity in tomato fruits was downregulated once expression of either RIN or SlASR1 was suppressed; indicating that RIN and SlASR1 positively regulate the transcription of β-Hex during fruit ripening. Interestingly, RIN could also bind to the SlASR1 promoter, which contains several CArG cis-acting elements, and SlASR1 expression was suppressed in rin mutant fruits, indicating that RIN also acts as a positive regulator of SlASR1 expression during fruit ripening. Taken together, these results suggest that RIN, both directly and indirectly, through SlASR1, regulates the transcription of β-Hex during fruit ripening. The fruit ripening-specific promoter of β-Hex could be a useful tool in regulating gene expression during fruit ripening |
---|---|
Beschreibung: | Date Completed 08.07.2015 Date Revised 07.12.2022 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1460-2431 |
DOI: | 10.1093/jxb/eru324 |