Europium-complex-grafted polymer dots for amplified quenching and cellular imaging applications

We report on a europium-complex-grafted polymer for preparing stable nanoparticle probes with high luminescence brightness, narrow emission bandwidth, and long luminescence lifetimes. A Eu complex bearing an amino group was used to react with a functional copolymer poly(styrene-co-maleic anhydride)...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 30(2014), 28 vom: 22. Juli, Seite 8607-14
1. Verfasser: Li, Qiong (VerfasserIn)
Weitere Verfasser: Zhang, Jianan, Sun, Wei, Yu, Jiangbo, Wu, Changfeng, Qin, Weiping, Chiu, Daniel T
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Maleates Polymers Polystyrenes poly(styrene-co-maleic anhydride) Europium 444W947O8O
Beschreibung
Zusammenfassung:We report on a europium-complex-grafted polymer for preparing stable nanoparticle probes with high luminescence brightness, narrow emission bandwidth, and long luminescence lifetimes. A Eu complex bearing an amino group was used to react with a functional copolymer poly(styrene-co-maleic anhydride) by the spontaneous amidation reaction, producing the polymer grafted with Eu complexes in the side chains. The Eu-complex-grafted polymer was further used to prepare Eu-complex-grafted polymer dots (Pdots) and Eu-complex-blended poly(9-vinylcarbazole) composite Pdots, which showed improved colloidal stability as compared to those directly doped with Eu-complex molecules. Both types of Pdots can be efficiently quenched by a nile blue dye, exhibiting much lower detection limit and higher quenching sensitivity as compared to free Eu-complex molecules. Steady-state spectroscopy and time-resolved decay dynamics suggest the quenching mechanism is via efficient fluorescence resonance energy transfer from the Eu complex inside a Pdot to surface dye molecules. The amplified quenching in Eu-complex Pdots, together with efficient cell uptake and specific cell surface labeling observed in mammalian cells, suggests their potential applications in time-resolved bioassays and cellular imaging
Beschreibung:Date Completed 11.05.2015
Date Revised 22.07.2014
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la501876m