Finding a nitrogen niche : a systems integration of local and systemic nitrogen signalling in plants
© The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Veröffentlicht in: | Journal of experimental botany. - 1985. - 65(2014), 19 vom: 30. Okt., Seite 5601-10 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2014
|
Zugriff auf das übergeordnete Werk: | Journal of experimental botany |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Review Local signalling long-distance messenger nitrogen response phytohormone root split-root mehr... |
Zusammenfassung: | © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com. The ability of plants to sense their nitrogen (N) microenvironment in the soil and deploy strategic root growth in N-rich patches requires exquisite systems integration. Remarkably, this new paradigm for systems biology research has intrigued plant biologists for more than a century, when a split-root framework was first used to study how plants sense and respond to heterogeneous soil nutrient environments. This systemic N-signalling mechanism, allowing plants to sense and forage for mineral nutrients in resource-rich patches, has important implications for agriculture. In this review, we will focus on how advances in the post-genomic era have uncovered the gene regulatory networks underlying systemic N-signalling. After defining how local and systemic N-signalling can be experimentally distinguished for molecular study using a split-root system, the genetic factors that have been shown to mediate local and/or systemic N-signalling are reviewed. Second, the genetic mechanism of this regulatory system is broadened to the whole genome level. To do this, publicly available N-related transcriptomic datasets are compared with genes that have previously been identified as local and systemic N responders in a split-root transcriptome dataset. Specifically, (i) it was found that transcriptional reprogramming triggered by homogeneous N-treatments is composed of both local and systemic responses, (ii) the spatio-temporal signature of local versus systemic responsive genes is defined, and (iii) the conservation of systemic N-signalling between Arabidopsis and Medicago is assessed. Finally, the potential mediators, i.e. metabolites and phytohormones, of the N-related long-distance signals, are discussed |
---|---|
Beschreibung: | Date Completed 08.06.2015 Date Revised 29.09.2014 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1460-2431 |
DOI: | 10.1093/jxb/eru263 |