Charge transport in polycrystalline graphene : challenges and opportunities

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 26(2014), 30 vom: 13. Aug., Seite 5079-94
1. Verfasser: Cummings, Aron W (VerfasserIn)
Weitere Verfasser: Duong, Dinh Loc, Nguyen, Van Luan, Van Tuan, Dinh, Kotakoski, Jani, Barrios Vargas, Jose Eduardo, Lee, Young Hee, Roche, Stephan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Research Support, Non-U.S. Gov't charge transport functionalization grain boundaries graphene scaling law
Beschreibung
Zusammenfassung:© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Graphene has attracted significant interest both for exploring fundamental science and for a wide range of technological applications. Chemical vapor deposition (CVD) is currently the only working approach to grow graphene at wafer scale, which is required for industrial applications. Unfortunately, CVD graphene is intrinsically polycrystalline, with pristine graphene grains stitched together by disordered grain boundaries, which can be either a blessing or a curse. On the one hand, grain boundaries are expected to degrade the electrical and mechanical properties of polycrystalline graphene, rendering the material undesirable for many applications. On the other hand, they exhibit an increased chemical reactivity, suggesting their potential application to sensing or as templates for synthesis of one-dimensional materials. Therefore, it is important to gain a deeper understanding of the structure and properties of graphene grain boundaries. Here, we review experimental progress on identification and electrical and chemical characterization of graphene grain boundaries. We use numerical simulations and transport measurements to demonstrate that electrical properties and chemical modification of graphene grain boundaries are strongly correlated. This not only provides guidelines for the improvement of graphene devices, but also opens a new research area of engineering graphene grain boundaries for highly sensitive electro-biochemical devices
Beschreibung:Date Completed 12.05.2015
Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201401389