Lipid-lipid interactions in aminated reduced graphene oxide interface for biosensing application

A label-free biosensor based on antiapolipoprotein B 100 functionalized-aminated reduced graphene oxide interface has been fabricated for detection of low density lipoprotein (LDL or lipid) cholesterol. The aminated reduced graphene oxide (NH2-rGO) based electrode surface is covalently functionalize...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 30(2014), 14 vom: 15. Apr., Seite 4192-201
1. Verfasser: Ali, Md Azahar (VerfasserIn)
Weitere Verfasser: Kamil Reza, K, Srivastava, Saurabh, Agrawal, Ved Varun, John, Renu, Malhotra, Bansi Dhar
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Lipids Oxides Graphite 7782-42-5
Beschreibung
Zusammenfassung:A label-free biosensor based on antiapolipoprotein B 100 functionalized-aminated reduced graphene oxide interface has been fabricated for detection of low density lipoprotein (LDL or lipid) cholesterol. The aminated reduced graphene oxide (NH2-rGO) based electrode surface is covalently functionalized with antiapolipoprotein B 100 (AAB or lipid) using EDC/NHS coupling chemistry. The lipid-lipid interactions at the NH2-rGO electrode surface have been investigated using electrochemical impedance spectroscopic technique. The structural and morphological investigations of NH2-rGO based immunosensor have been accomplished via transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, UV-visible, and electrochemical techniques. The impedimetric response of the proposed immunosensor shows excellent sensitivity (612 Ω mg(-1) dL cm(-2)), a response time of 250 s, and a low detection limit of 5 mg/dL of LDL molecules. The association, dissociation, and equilibrium rate constants for this immunoelectrode are found to be 1.66 M(-1) s(-1), 0.6 s(-1), and 2.77 M(-1), respectively. The long-term stability and excellent reproducibility of the proposed immunosensor indicates a suitable platform for detection of LDL or lipid molecules. This immunosensor provides an efficient platform for analysis of the antigen-antibody interactions of lipid molecules
Beschreibung:Date Completed 10.04.2015
Date Revised 15.04.2014
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la4049852