Proteomic analysis of pakchoi leaves and roots under glycine-nitrogen conditions
Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Veröffentlicht in: | Plant physiology and biochemistry : PPB. - 1991. - 75(2014) vom: 15. Feb., Seite 96-104 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2014
|
Zugriff auf das übergeordnete Werk: | Plant physiology and biochemistry : PPB |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't 2-DE 3-[(3-cholamido-propyl)-dimethylammonio]-1-propanesulfonate Amino acid CA CAN CBB CCS CHAPS mehr... |
Zusammenfassung: | Copyright © 2014 Elsevier Masson SAS. All rights reserved. The physiological and differential proteomic responses of pakchoi leaves and roots to glycine-nitrogen (Gly-N) treatments were determined. Two pakchoi (Brassica campestris ssp. chinensis L. Makino. var. communis Tsen et Lee) cultivars, 'Huawang' and 'Wuyueman', were grown under sterile hydroponic conditions with different N forms (Gly-N and nitrate-N). Gly-N-treated pakchoi exhibited decreased fresh weights, total N uptake, leaf areas, and net photosynthetic rates than those treated with nitrate-N. Differentially regulated proteins were selected after image analysis and identified using MALDI-TOF MS. A total of 23 proteins was up- or down-regulated following Gly-N treatment. These spots are involved in several processes, such as energy synthesis, N metabolism, photosynthesis, and active antioxidant defense mechanisms, that could enhance plant adaptation to Gly-N. The superior Gly tolerance of 'Huawang' was predominantly associated with a less severe down-regulation of proteins that are involved in the electron transport chain and N metabolism. Other factors could include less ribulose-1,5-bisphosphate carboxylase/oxygenase turnover or a higher up-regulation of stress defense proteins. These characteristics demonstrated that maintaining ATP synthesis, N metabolism, photosynthesis, and active defense mechanisms play a critical role in pakchoi adaptation to Gly-N |
---|---|
Beschreibung: | Date Completed 29.09.2014 Date Revised 09.01.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1873-2690 |
DOI: | 10.1016/j.plaphy.2013.12.012 |