Ideal three-dimensional electrode structures for electrochemical energy storage
© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Publié dans: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 26(2014), 15 vom: 16. Apr., Seite 2440-5 |
---|---|
Auteur principal: | |
Autres auteurs: | , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2014
|
Accès à la collection: | Advanced materials (Deerfield Beach, Fla.) |
Sujets: | Journal Article Research Support, Non-U.S. Gov't 3D electrodes energy storage ion diffusion and electron transport length template-assisted synthesis template-free synthesis |
Résumé: | © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Three-dimensional electrodes offer great advantages, such as enhanced ion and electron transport, increased material loading per unit substrate area, and improved mechanical stability upon repeated charge-discharge. The origin of these advantages is discussed and the criteria for ideal 3D electrode structure are outlined. One of the common features of ideal 3D electrodes is the use of a 3D carbon- or metal-based porous framework as the structural backbone and current collector. The synthesis methods of these 3D frameworks and their composites with redox-active materials are summarized, including transition metal oxides and conducting polymers. The structural characteristics and electrochemical performances are also reviewed. Synthesis of composite 3D electrodes is divided into two types - template-assisted and template-free methods - depending on whether a pre-made template is required. The advantages and drawbacks of both strategies are discussed |
---|---|
Description: | Date Completed 13.04.2015 Date Revised 30.09.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201305095 |