|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM233669353 |
003 |
DE-627 |
005 |
20250216110519.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2014 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201305095
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0778.xml
|
035 |
|
|
|a (DE-627)NLM233669353
|
035 |
|
|
|a (NLM)24339050
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chabi, Sakineh
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Ideal three-dimensional electrode structures for electrochemical energy storage
|
264 |
|
1 |
|c 2014
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 13.04.2015
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Three-dimensional electrodes offer great advantages, such as enhanced ion and electron transport, increased material loading per unit substrate area, and improved mechanical stability upon repeated charge-discharge. The origin of these advantages is discussed and the criteria for ideal 3D electrode structure are outlined. One of the common features of ideal 3D electrodes is the use of a 3D carbon- or metal-based porous framework as the structural backbone and current collector. The synthesis methods of these 3D frameworks and their composites with redox-active materials are summarized, including transition metal oxides and conducting polymers. The structural characteristics and electrochemical performances are also reviewed. Synthesis of composite 3D electrodes is divided into two types - template-assisted and template-free methods - depending on whether a pre-made template is required. The advantages and drawbacks of both strategies are discussed
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a 3D electrodes
|
650 |
|
4 |
|a energy storage
|
650 |
|
4 |
|a ion diffusion and electron transport length
|
650 |
|
4 |
|a template-assisted synthesis
|
650 |
|
4 |
|a template-free synthesis
|
700 |
1 |
|
|a Peng, Chuang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hu, Di
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Yanqiu
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 26(2014), 15 vom: 16. Apr., Seite 2440-5
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:26
|g year:2014
|g number:15
|g day:16
|g month:04
|g pages:2440-5
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201305095
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 26
|j 2014
|e 15
|b 16
|c 04
|h 2440-5
|