Differential induction of antioxidant stilbenoids in hairy roots of Vitis rotundifolia treated with methyl jasmonate and hydrogen peroxide

Copyright © 2013 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 74(2014) vom: 01. Jan., Seite 50-69
1. Verfasser: Nopo-Olazabal, Cesar (VerfasserIn)
Weitere Verfasser: Condori, Jose, Nopo-Olazabal, Luis, Medina-Bolivar, Fabricio
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. 2,2-diphenyl-1-picrylhydrazyl 2,2′-azinobis[3-ethylbenzthiazoline sulfonic acid] 2,6 dimethyl-β-cyclodextrin ABTS Antioxidant BDS CHS mehr... CTAB DIMEB DPPH DW Dunstan and Short medium Elicitation EtOAc FW H(2)O(2) HPLC Hairy root JA MIQE MS MSV MeJA Minimum Information for Publication of Quantitative Real-Time PCR Experiments Murashige and Skoog medium Muscadine grape NF PAL RNA quality indicator ROS RQI RS Rt SD Stilbene synthase Stilbenoid TAC TEAC Trolox equivalent antioxidant capacity V Vitis rotundifolia cetyltrimethylammonium bromide chalcone synthase dry weight ethyl acetate fresh weight high performance liquid chromatography hydrogen peroxide jasmonic acid methyl jasmonate modified Murashige and Skoog medium normalization factor pairwise variation phenylalanine ammonia-lyase qPCR quantitative polymerase chain reaction reactive oxygen species resveratrol synthase retention time specific growth rate standard deviation total antioxidant capacity μ Acetates Antioxidants Benzothiazoles Biphenyl Compounds Culture Media Cyclopentanes Oxylipins Picrates RNA, Plant Stilbenes Sulfonic Acids 2,2'-azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid 28752-68-3 900N171A0F Hydrogen Peroxide BBX060AN9V 1,1-diphenyl-2-picrylhydrazyl DFD3H4VGDH
LEADER 01000naa a22002652 4500
001 NLM233006869
003 DE-627
005 20231224094209.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plaphy.2013.10.035  |2 doi 
028 5 2 |a pubmed24n0776.xml 
035 |a (DE-627)NLM233006869 
035 |a (NLM)24269870 
035 |a (PII)S0981-9428(13)00385-9 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nopo-Olazabal, Cesar  |e verfasserin  |4 aut 
245 1 0 |a Differential induction of antioxidant stilbenoids in hairy roots of Vitis rotundifolia treated with methyl jasmonate and hydrogen peroxide 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.09.2014 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2013 Elsevier Masson SAS. All rights reserved. 
520 |a Stilbenoids are polyphenolic phytoalexins that exhibit potential health applications in humans. Hairy root cultures of muscadine grape (Vitis rotundifolia Michx.) were used to study the biochemical and molecular regulation of stilbenoid biosynthesis upon treatment with 100 μM methyl jasmonate (MeJA) or 10 mM hydrogen peroxide (H2O2) over a 96-h period. Resveratrol, piceid, and ε-viniferin were identified in higher concentrations in the tissue whereas resveratrol was the most abundant stilbenoid in the medium under either treatment. An earlier increase in resveratrol accumulation was observed for the MeJA-treated group showing a maximum at 12 h in the tissue and 18 h in the medium. Furthermore, the antioxidant capacity of extracts from the tissue and medium was determined by the 2,2'-azinobis[3-ethylbenzthiazoline sulfonic acid] (ABTS) and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays showing correlation with the stilbenoid content. Fourteen candidate reference genes for qPCR were tested under the described experimental conditions and resulted in the selection of 5 reference genes. Quantitative analyses of transcripts for phenylalanine ammonia-lyase (PAL), resveratrol synthase (RS), and two stilbene synthases (STS and STS2) showed the highest RNA level induction at 3 h for both treatments with a higher induction for the MeJA treatment. In contrast, the flavonoid-related chalcone synthase (CHS) transcripts showed induction and a decrease in expression for MeJA and H2O2 treatments, respectively. The observed responses could be related to an oxidative burst triggered by the exposure to abiotic stressor compounds with signaling function such as MeJA and H2O2 which have been previously related to the synthesis of secondary metabolites 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a 2,2-diphenyl-1-picrylhydrazyl 
650 4 |a 2,2′-azinobis[3-ethylbenzthiazoline sulfonic acid] 
650 4 |a 2,6 dimethyl-β-cyclodextrin 
650 4 |a ABTS 
650 4 |a Antioxidant 
650 4 |a BDS 
650 4 |a CHS 
650 4 |a CTAB 
650 4 |a DIMEB 
650 4 |a DPPH 
650 4 |a DW 
650 4 |a Dunstan and Short medium 
650 4 |a Elicitation 
650 4 |a EtOAc 
650 4 |a FW 
650 4 |a H(2)O(2) 
650 4 |a HPLC 
650 4 |a Hairy root 
650 4 |a JA 
650 4 |a MIQE 
650 4 |a MS 
650 4 |a MSV 
650 4 |a MeJA 
650 4 |a Minimum Information for Publication of Quantitative Real-Time PCR Experiments 
650 4 |a Murashige and Skoog medium 
650 4 |a Muscadine grape 
650 4 |a NF 
650 4 |a PAL 
650 4 |a RNA quality indicator 
650 4 |a ROS 
650 4 |a RQI 
650 4 |a RS 
650 4 |a Rt 
650 4 |a SD 
650 4 |a Stilbene synthase 
650 4 |a Stilbenoid 
650 4 |a TAC 
650 4 |a TEAC 
650 4 |a Trolox equivalent antioxidant capacity 
650 4 |a V 
650 4 |a Vitis rotundifolia 
650 4 |a cetyltrimethylammonium bromide 
650 4 |a chalcone synthase 
650 4 |a dry weight 
650 4 |a ethyl acetate 
650 4 |a fresh weight 
650 4 |a high performance liquid chromatography 
650 4 |a hydrogen peroxide 
650 4 |a jasmonic acid 
650 4 |a methyl jasmonate 
650 4 |a modified Murashige and Skoog medium 
650 4 |a normalization factor 
650 4 |a pairwise variation 
650 4 |a phenylalanine ammonia-lyase 
650 4 |a qPCR 
650 4 |a quantitative polymerase chain reaction 
650 4 |a reactive oxygen species 
650 4 |a resveratrol synthase 
650 4 |a retention time 
650 4 |a specific growth rate 
650 4 |a standard deviation 
650 4 |a total antioxidant capacity 
650 4 |a μ 
650 7 |a Acetates  |2 NLM 
650 7 |a Antioxidants  |2 NLM 
650 7 |a Benzothiazoles  |2 NLM 
650 7 |a Biphenyl Compounds  |2 NLM 
650 7 |a Culture Media  |2 NLM 
650 7 |a Cyclopentanes  |2 NLM 
650 7 |a Oxylipins  |2 NLM 
650 7 |a Picrates  |2 NLM 
650 7 |a RNA, Plant  |2 NLM 
650 7 |a Stilbenes  |2 NLM 
650 7 |a Sulfonic Acids  |2 NLM 
650 7 |a 2,2'-azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid  |2 NLM 
650 7 |a 28752-68-3  |2 NLM 
650 7 |a methyl jasmonate  |2 NLM 
650 7 |a 900N171A0F  |2 NLM 
650 7 |a Hydrogen Peroxide  |2 NLM 
650 7 |a BBX060AN9V  |2 NLM 
650 7 |a 1,1-diphenyl-2-picrylhydrazyl  |2 NLM 
650 7 |a DFD3H4VGDH  |2 NLM 
700 1 |a Condori, Jose  |e verfasserin  |4 aut 
700 1 |a Nopo-Olazabal, Luis  |e verfasserin  |4 aut 
700 1 |a Medina-Bolivar, Fabricio  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant physiology and biochemistry : PPB  |d 1991  |g 74(2014) vom: 01. Jan., Seite 50-69  |w (DE-627)NLM098178261  |x 1873-2690  |7 nnns 
773 1 8 |g volume:74  |g year:2014  |g day:01  |g month:01  |g pages:50-69 
856 4 0 |u http://dx.doi.org/10.1016/j.plaphy.2013.10.035  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 74  |j 2014  |b 01  |c 01  |h 50-69