Adaptive image resizing based on continuous-domain stochastic modeling

We introduce an adaptive continuous-domain modeling approach to texture and natural images. The continuous-domain image is assumed to be a smooth function, and we embed it in a parameterized Sobolev space. We point out a link between Sobolev spaces and stochastic auto-regressive models, and exploit...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 1 vom: 20. Jan., Seite 413-23
1. Verfasser: Kirshner, Hagai (VerfasserIn)
Weitere Verfasser: Bourquard, Aurélien, Ward, John Paul, Porat, Moshe, Unser, Michael
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM232684464
003 DE-627
005 20231224093522.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0775.xml 
035 |a (DE-627)NLM232684464 
035 |a (NLM)24235249 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kirshner, Hagai  |e verfasserin  |4 aut 
245 1 0 |a Adaptive image resizing based on continuous-domain stochastic modeling 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.09.2014 
500 |a Date Revised 31.01.2014 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We introduce an adaptive continuous-domain modeling approach to texture and natural images. The continuous-domain image is assumed to be a smooth function, and we embed it in a parameterized Sobolev space. We point out a link between Sobolev spaces and stochastic auto-regressive models, and exploit it for optimally choosing Sobolev parameters from available pixel values. To this aim, we use exact continuous-to-discrete mapping of the auto-regressive model that is based on symmetric exponential splines. The mapping is computationally efficient, and we exploit it for maximizing an approximated Gaussian likelihood function.We account for non-Gaussian Lévy-type processes by deriving a more robust estimator that is based on the sample auto-correlation sequence. Both estimators use multiple initialization values for overcoming the local minima structure of the fitting criteria. Experimental image resizing results indicate that the auto-correlation criterion can cope better with non-Gaussian processes and model mismatch. Our work demonstrates the importance of the auto-correlation function in adaptive image interpolation and image modeling tasks, and we believe it is instrumental in other image processing tasks as well 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Bourquard, Aurélien  |e verfasserin  |4 aut 
700 1 |a Ward, John Paul  |e verfasserin  |4 aut 
700 1 |a Porat, Moshe  |e verfasserin  |4 aut 
700 1 |a Unser, Michael  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 1 vom: 20. Jan., Seite 413-23  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:1  |g day:20  |g month:01  |g pages:413-23 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 1  |b 20  |c 01  |h 413-23