Adaptive image resizing based on continuous-domain stochastic modeling

We introduce an adaptive continuous-domain modeling approach to texture and natural images. The continuous-domain image is assumed to be a smooth function, and we embed it in a parameterized Sobolev space. We point out a link between Sobolev spaces and stochastic auto-regressive models, and exploit...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 1 vom: 20. Jan., Seite 413-23
1. Verfasser: Kirshner, Hagai (VerfasserIn)
Weitere Verfasser: Bourquard, Aurélien, Ward, John Paul, Porat, Moshe, Unser, Michael
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:We introduce an adaptive continuous-domain modeling approach to texture and natural images. The continuous-domain image is assumed to be a smooth function, and we embed it in a parameterized Sobolev space. We point out a link between Sobolev spaces and stochastic auto-regressive models, and exploit it for optimally choosing Sobolev parameters from available pixel values. To this aim, we use exact continuous-to-discrete mapping of the auto-regressive model that is based on symmetric exponential splines. The mapping is computationally efficient, and we exploit it for maximizing an approximated Gaussian likelihood function.We account for non-Gaussian Lévy-type processes by deriving a more robust estimator that is based on the sample auto-correlation sequence. Both estimators use multiple initialization values for overcoming the local minima structure of the fitting criteria. Experimental image resizing results indicate that the auto-correlation criterion can cope better with non-Gaussian processes and model mismatch. Our work demonstrates the importance of the auto-correlation function in adaptive image interpolation and image modeling tasks, and we believe it is instrumental in other image processing tasks as well
Beschreibung:Date Completed 23.09.2014
Date Revised 31.01.2014
published: Print
Citation Status MEDLINE
ISSN:1941-0042