Object detection via structural feature selection and shape model

In this paper, we propose an approach for object detection via structural feature selection and part-based shape model. It automatically learns a shape model from cluttered training images without need to explicitly use bounding boxes on objects. Our approach first builds a class-specific codebook o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 12 vom: 16. Dez., Seite 4984-95
1. Verfasser: Zhang, Huigang (VerfasserIn)
Weitere Verfasser: Bai, Xiao, Zhou, Jun, Cheng, Jian, Zhao, Huijie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM230940315
003 DE-627
005 20231224085555.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0769.xml 
035 |a (DE-627)NLM230940315 
035 |a (NLM)24043386 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Huigang  |e verfasserin  |4 aut 
245 1 0 |a Object detection via structural feature selection and shape model 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.05.2014 
500 |a Date Revised 14.11.2013 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we propose an approach for object detection via structural feature selection and part-based shape model. It automatically learns a shape model from cluttered training images without need to explicitly use bounding boxes on objects. Our approach first builds a class-specific codebook of local contour features, and then generates structural feature descriptors by combining context shape information. These descriptors are robust to both within-class variations and scale changes. Through exploring pairwise image matching using fast earth mover's distance, feature weights can be iteratively updated. Those discriminative foreground features are assigned high weights and then selected to build a part-based shape model. Finally, object detection is performed by matching each testing image with this model. Experiments show that the proposed method is very effective. It has achieved comparable performance to the state-of-the-art shape-based detection methods, but requires much less training information 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Bai, Xiao  |e verfasserin  |4 aut 
700 1 |a Zhou, Jun  |e verfasserin  |4 aut 
700 1 |a Cheng, Jian  |e verfasserin  |4 aut 
700 1 |a Zhao, Huijie  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 22(2013), 12 vom: 16. Dez., Seite 4984-95  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:22  |g year:2013  |g number:12  |g day:16  |g month:12  |g pages:4984-95 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2013  |e 12  |b 16  |c 12  |h 4984-95