Object detection via structural feature selection and shape model

In this paper, we propose an approach for object detection via structural feature selection and part-based shape model. It automatically learns a shape model from cluttered training images without need to explicitly use bounding boxes on objects. Our approach first builds a class-specific codebook o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 12 vom: 16. Dez., Seite 4984-95
1. Verfasser: Zhang, Huigang (VerfasserIn)
Weitere Verfasser: Bai, Xiao, Zhou, Jun, Cheng, Jian, Zhao, Huijie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:In this paper, we propose an approach for object detection via structural feature selection and part-based shape model. It automatically learns a shape model from cluttered training images without need to explicitly use bounding boxes on objects. Our approach first builds a class-specific codebook of local contour features, and then generates structural feature descriptors by combining context shape information. These descriptors are robust to both within-class variations and scale changes. Through exploring pairwise image matching using fast earth mover's distance, feature weights can be iteratively updated. Those discriminative foreground features are assigned high weights and then selected to build a part-based shape model. Finally, object detection is performed by matching each testing image with this model. Experiments show that the proposed method is very effective. It has achieved comparable performance to the state-of-the-art shape-based detection methods, but requires much less training information
Beschreibung:Date Completed 16.05.2014
Date Revised 14.11.2013
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042