Actual and potential use of population viability analyses in recovery of plant species listed under the US endangered species act

© 2013 Society for Conservation Biology.

Bibliographische Detailangaben
Veröffentlicht in:Conservation biology : the journal of the Society for Conservation Biology. - 1999. - 27(2013), 6 vom: 21. Dez., Seite 1265-78
1. Verfasser: Zeigler, Sara L (VerfasserIn)
Weitere Verfasser: Che-Castaldo, Judy P, Neel, Maile C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Conservation biology : the journal of the Society for Conservation Biology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Review matrix model minimum viable population modelo matricial modelo poblacional planificación de recuperación población mínima viable population growth rate mehr... population model recovery planning tasa de crecimiento poblacional
Beschreibung
Zusammenfassung:© 2013 Society for Conservation Biology.
Use of population viability analyses (PVAs) in endangered species recovery planning has been met with both support and criticism. Previous reviews promote use of PVA for setting scientifically based, measurable, and objective recovery criteria and recommend improvements to increase the framework's utility. However, others have questioned the value of PVA models for setting recovery criteria and assert that PVAs are more appropriate for understanding relative trade-offs between alternative management actions. We reviewed 258 final recovery plans for 642 plants listed under the U.S. Endangered Species Act to determine the number of plans that used or recommended PVA in recovery planning. We also reviewed 223 publications that describe plant PVAs to assess how these models were designed and whether those designs reflected previous recommendations for improvement of PVAs. Twenty-four percent of listed species had recovery plans that used or recommended PVA. In publications, the typical model was a matrix population model parameterized with ≤5 years of demographic data that did not consider stochasticity, genetics, density dependence, seed banks, vegetative reproduction, dormancy, threats, or management strategies. Population growth rates for different populations of the same species or for the same population at different points in time were often statistically different or varied by >10%. Therefore, PVAs parameterized with underlying vital rates that vary to this degree may not accurately predict recovery objectives across a species' entire distribution or over longer time scales. We assert that PVA, although an important tool as part of an adaptive-management program, can help to determine quantitative recovery criteria only if more long-term data sets that capture spatiotemporal variability in vital rates become available. Lacking this, there is a strong need for viable and comprehensive methods for determining quantitative, science-based recovery criteria for endangered species with minimal data availability. Uso Actual y Potencial del Análisis de Viabilidad Poblacional para la Recuperación de Especies de Plantas Enlistadas en el Acta de Especies En Peligro de E.U.A
Beschreibung:Date Completed 31.07.2014
Date Revised 04.12.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:1523-1739
DOI:10.1111/cobi.12130