Poly(N-isopropylacrylamide)-stabilized gold nanoparticles in combination with tricationic branched phenylene-ethynylene fluorophore for protein identification
Gold nanoparticles stabilized by thermoresponsive polymer, poly(N-isopropylacrylamide) (PNIPAM-AuNPs) were prepared by surface grafting of thiol-terminated PNIPAM onto citrate-stabilized AuNPs. The color change of the PNIPAM-AuNPs solution from red to blue-purple without precipitation when the solut...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 29(2013), 39 vom: 01. Okt., Seite 12317-27 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2013
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Acrylic Resins Alkynes Cations Hemoglobins Transferrin Concanavalin A 11028-71-0 poly-N-isopropylacrylamide mehr... |
Zusammenfassung: | Gold nanoparticles stabilized by thermoresponsive polymer, poly(N-isopropylacrylamide) (PNIPAM-AuNPs) were prepared by surface grafting of thiol-terminated PNIPAM onto citrate-stabilized AuNPs. The color change of the PNIPAM-AuNPs solution from red to blue-purple without precipitation when the solution was heated to 40 °C, above the lower critical solution temperature (LCST) of PNIPAM, indicated the thermoresponsive property of the synthesized AuNPs. PNIPAM-AuNPs were used to detect proteins by chemical nose approach based on fluorescence quenching of fluorophore by AuNPs. An array-based sensing platform for detection of six proteins, namely bovine serum albumin, lysozyme, fibrinogen, concanavalin A, hemoglobin, holo-transferrin human can be successfully developed from the PNIPAM-AuNPs having different molecular weights (4 and 8 kDa) and conformation (varied heat treatment from 25 to 40 °C) in combination with a tricationic branched phenylene-ethynylene fluorophore. From principal component analysis (PCA) followed by linear discriminant analysis (LDA), 100% accuracy of protein classification using a leave-one-out (LOO) approach can be achieved by using only two types of PNIPAM-AuNPs |
---|---|
Beschreibung: | Date Completed 29.04.2014 Date Revised 16.11.2017 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la402139g |