LEADER 01000naa a22002652 4500
001 NLM229902197
003 DE-627
005 20231224083156.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plaphy.2013.07.008  |2 doi 
028 5 2 |a pubmed24n0766.xml 
035 |a (DE-627)NLM229902197 
035 |a (NLM)23932150 
035 |a (PII)S0981-9428(13)00278-7 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Jun-Jie  |e verfasserin  |4 aut 
245 1 0 |a Involvement of anthocyanins in the resistance to chilling-induced oxidative stress in Saccharum officinarum L. leaves 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.07.2014 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2013 Elsevier Masson SAS. All rights reserved. 
520 |a Whether anthocyanins elevate resistance to chilling-induced oxidative stress in Saccharum officinarum L. cv Badila seedlings is investigated. Plants with four fully expanded leaves were exposed to chilling stress (8 °C/4 °C, 11 h photoperiod) for 3 days and then transferred to rewarming condition (25 °C/20 °C, 11 h photoperiod) for another 2 days. At the end of the chilling period, H2O2 and superoxide radical (O2-) levels increased sharply and were near the same in the central (CL) and the final fully expanded leaves (FL). Moreover, the degree of chilling injury indicated by malonaldehyde concentration and percent of ion leakage also was near the same. Most of the tested parameters returned near to the control level after 2 days of rewarming. With further analyzing, we found that superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11), glutathione reductase (EC 1.6.4.2) activities increased much higher and catalase (EC 1.11.1.6) activity and ascorbate/dehydroascorbate ratio decreased much more in FL than CL in response to chilling. However, anthocyanins concentration coupling with glutathione/oxidized glutathione increased much higher in CL than FL under chilling stress. These finds suggest that anthocyanins at least partially compensate the relative deficiency of antioxidants in CL compared with FL. α,α-Diphenyl-β-picrylhydrazyl assays further confirmed this idea. The relationships between anthocyanins and antioxidants were analyzed and the possible mechanisms of the affection of anthocyanins on antioxidant metabolism were discussed 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a APX 
650 4 |a ASC 
650 4 |a Anthocyanin 
650 4 |a Antioxidant 
650 4 |a CAT 
650 4 |a CL 
650 4 |a Chewing cane 
650 4 |a Chilling 
650 4 |a DHAR 
650 4 |a DPPH 
650 4 |a FL 
650 4 |a GR 
650 4 |a GSH 
650 4 |a GSSG 
650 4 |a H(2)O(2) 
650 4 |a MDA 
650 4 |a O(2)(−) 
650 4 |a PPF 
650 4 |a ROS 
650 4 |a Reactive oxygen species 
650 4 |a SOD 
650 4 |a ascorbate 
650 4 |a ascorbate peroxidase 
650 4 |a catalase 
650 4 |a central leaves 
650 4 |a dehydroascorbate reductase 
650 4 |a final fully expanded leaves 
650 4 |a glutathione reductase 
650 4 |a hydrogen peroxide 
650 4 |a malondialdehyde 
650 4 |a oxidized glutathione 
650 4 |a photosynthetic photon flux 
650 4 |a reactive oxygen species 
650 4 |a reduced glutathione 
650 4 |a superoxide dismutase 
650 4 |a superoxide radical 
650 4 |a α,α-diphenyl-β-picrylhydrazyl 
650 7 |a Anthocyanins  |2 NLM 
650 7 |a Antioxidants  |2 NLM 
650 7 |a Ions  |2 NLM 
650 7 |a Superoxides  |2 NLM 
650 7 |a 11062-77-4  |2 NLM 
650 7 |a Malondialdehyde  |2 NLM 
650 7 |a 4Y8F71G49Q  |2 NLM 
650 7 |a Hydrogen Peroxide  |2 NLM 
650 7 |a BBX060AN9V  |2 NLM 
650 7 |a Ascorbate Peroxidases  |2 NLM 
650 7 |a EC 1.11.1.11  |2 NLM 
650 7 |a Catalase  |2 NLM 
650 7 |a EC 1.11.1.6  |2 NLM 
650 7 |a Superoxide Dismutase  |2 NLM 
650 7 |a EC 1.15.1.1  |2 NLM 
650 7 |a Glutathione Reductase  |2 NLM 
650 7 |a EC 1.8.1.7  |2 NLM 
650 7 |a Glutathione  |2 NLM 
650 7 |a GAN16C9B8O  |2 NLM 
700 1 |a Li, Yang-Rui  |e verfasserin  |4 aut 
700 1 |a Liao, Jiang-Xiong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant physiology and biochemistry : PPB  |d 1991  |g 73(2013) vom: 17. Dez., Seite 427-33  |w (DE-627)NLM098178261  |x 1873-2690  |7 nnns 
773 1 8 |g volume:73  |g year:2013  |g day:17  |g month:12  |g pages:427-33 
856 4 0 |u http://dx.doi.org/10.1016/j.plaphy.2013.07.008  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 73  |j 2013  |b 17  |c 12  |h 427-33