Involvement of anthocyanins in the resistance to chilling-induced oxidative stress in Saccharum officinarum L. leaves
Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Veröffentlicht in: | Plant physiology and biochemistry : PPB. - 1991. - 73(2013) vom: 17. Dez., Seite 427-33 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2013
|
Zugriff auf das übergeordnete Werk: | Plant physiology and biochemistry : PPB |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't APX ASC Anthocyanin Antioxidant CAT CL Chewing cane Chilling mehr... |
Zusammenfassung: | Copyright © 2013 Elsevier Masson SAS. All rights reserved. Whether anthocyanins elevate resistance to chilling-induced oxidative stress in Saccharum officinarum L. cv Badila seedlings is investigated. Plants with four fully expanded leaves were exposed to chilling stress (8 °C/4 °C, 11 h photoperiod) for 3 days and then transferred to rewarming condition (25 °C/20 °C, 11 h photoperiod) for another 2 days. At the end of the chilling period, H2O2 and superoxide radical (O2-) levels increased sharply and were near the same in the central (CL) and the final fully expanded leaves (FL). Moreover, the degree of chilling injury indicated by malonaldehyde concentration and percent of ion leakage also was near the same. Most of the tested parameters returned near to the control level after 2 days of rewarming. With further analyzing, we found that superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11), glutathione reductase (EC 1.6.4.2) activities increased much higher and catalase (EC 1.11.1.6) activity and ascorbate/dehydroascorbate ratio decreased much more in FL than CL in response to chilling. However, anthocyanins concentration coupling with glutathione/oxidized glutathione increased much higher in CL than FL under chilling stress. These finds suggest that anthocyanins at least partially compensate the relative deficiency of antioxidants in CL compared with FL. α,α-Diphenyl-β-picrylhydrazyl assays further confirmed this idea. The relationships between anthocyanins and antioxidants were analyzed and the possible mechanisms of the affection of anthocyanins on antioxidant metabolism were discussed |
---|---|
Beschreibung: | Date Completed 29.07.2014 Date Revised 30.09.2020 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1873-2690 |
DOI: | 10.1016/j.plaphy.2013.07.008 |