|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM229243185 |
003 |
DE-627 |
005 |
20231224081726.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2013 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.2166/wst.2013.229
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0764.xml
|
035 |
|
|
|a (DE-627)NLM229243185
|
035 |
|
|
|a (NLM)23863424
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Liu, Shiyu
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Physically based closed-form expression for the bimodal unsaturated hydraulic conductivity function
|
264 |
|
1 |
|c 2013
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 22.10.2013
|
500 |
|
|
|a Date Revised 16.11.2017
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Simulation of flow and contaminant transport through the vadose zone requires accurate parameterization of the soil hydraulic properties. This requirement is particularly important for soils with a complex structure. In the present study, a physically based closed-form expression for the bimodal unsaturated hydraulic conductivity function is proposed for soils with bimodal pore-size distribution. It combines the bimodal representation of the soil-water characteristic curve (SWCC) function of Liu with the conductivity representation model of Mualem. The proposed equations are defined by parameters that have physical significance, which can be related to the properties of the materials. Experimental data for the representation of bimodal SWCCs and corresponding hydraulic conductivity curves were used to demonstrate the applicability of the proposed functions. The proposed approaches resulted in good agreement with experimental data. These functions can potentially be used as an effective tool for identifying hydraulic porosities in mediums with a complex structure
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Soil
|2 NLM
|
700 |
1 |
|
|a Yasufuku, Noriyuki
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Qiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hemanta, Hazarika
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Water science and technology : a journal of the International Association on Water Pollution Research
|d 1986
|g 68(2013), 2 vom: 23., Seite 328-34
|w (DE-627)NLM098149431
|x 0273-1223
|7 nnns
|
773 |
1 |
8 |
|g volume:68
|g year:2013
|g number:2
|g day:23
|g pages:328-34
|
856 |
4 |
0 |
|u http://dx.doi.org/10.2166/wst.2013.229
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 68
|j 2013
|e 2
|b 23
|h 328-34
|