Physically based closed-form expression for the bimodal unsaturated hydraulic conductivity function

Simulation of flow and contaminant transport through the vadose zone requires accurate parameterization of the soil hydraulic properties. This requirement is particularly important for soils with a complex structure. In the present study, a physically based closed-form expression for the bimodal uns...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 68(2013), 2 vom: 23., Seite 328-34
1. Verfasser: Liu, Shiyu (VerfasserIn)
Weitere Verfasser: Yasufuku, Noriyuki, Liu, Qiang, Hemanta, Hazarika
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Soil
Beschreibung
Zusammenfassung:Simulation of flow and contaminant transport through the vadose zone requires accurate parameterization of the soil hydraulic properties. This requirement is particularly important for soils with a complex structure. In the present study, a physically based closed-form expression for the bimodal unsaturated hydraulic conductivity function is proposed for soils with bimodal pore-size distribution. It combines the bimodal representation of the soil-water characteristic curve (SWCC) function of Liu with the conductivity representation model of Mualem. The proposed equations are defined by parameters that have physical significance, which can be related to the properties of the materials. Experimental data for the representation of bimodal SWCCs and corresponding hydraulic conductivity curves were used to demonstrate the applicability of the proposed functions. The proposed approaches resulted in good agreement with experimental data. These functions can potentially be used as an effective tool for identifying hydraulic porosities in mediums with a complex structure
Beschreibung:Date Completed 22.10.2013
Date Revised 16.11.2017
published: Print
Citation Status MEDLINE
ISSN:0273-1223
DOI:10.2166/wst.2013.229