Global optimization of parameters in the reactive force field ReaxFF for SiOH

Copyright © 2013 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 34(2013), 25 vom: 30. Sept., Seite 2178-89
1. Verfasser: Larsson, Henrik R (VerfasserIn)
Weitere Verfasser: van Duin, Adri C T, Hartke, Bernd
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article evolutionary algorithms force-field fitting genetic algorithms global optimization reactive force fields
LEADER 01000naa a22002652 4500
001 NLM229153011
003 DE-627
005 20231224081526.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.23382  |2 doi 
028 5 2 |a pubmed24n0763.xml 
035 |a (DE-627)NLM229153011 
035 |a (NLM)23852672 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Larsson, Henrik R  |e verfasserin  |4 aut 
245 1 0 |a Global optimization of parameters in the reactive force field ReaxFF for SiOH 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.02.2014 
500 |a Date Revised 20.08.2013 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Copyright © 2013 Wiley Periodicals, Inc. 
520 |a We have used unbiased global optimization to fit a reactive force field to a given set of reference data. Specifically, we have employed genetic algorithms (GA) to fit ReaxFF to SiOH data, using an in-house GA code that is parallelized across reference data items via the message-passing interface (MPI). Details of GA tuning turn-ed out to be far less important for global optimization efficiency than using suitable ranges within which the parameters are varied. To establish these ranges, either prior knowledge can be used or successive stages of GA optimizations, each building upon the best parameter vectors and ranges found in the previous stage. We have finally arrive-ed at optimized force fields with smaller error measures than those published previously. Hence, this optimization approach will contribute to converting force-field fitting from a specialist task to an everyday commodity, even for the more difficult case of reactive force fields 
650 4 |a Journal Article 
650 4 |a evolutionary algorithms 
650 4 |a force-field fitting 
650 4 |a genetic algorithms 
650 4 |a global optimization 
650 4 |a reactive force fields 
700 1 |a van Duin, Adri C T  |e verfasserin  |4 aut 
700 1 |a Hartke, Bernd  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 34(2013), 25 vom: 30. Sept., Seite 2178-89  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:34  |g year:2013  |g number:25  |g day:30  |g month:09  |g pages:2178-89 
856 4 0 |u http://dx.doi.org/10.1002/jcc.23382  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2013  |e 25  |b 30  |c 09  |h 2178-89