Global optimization of parameters in the reactive force field ReaxFF for SiOH

Copyright © 2013 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 34(2013), 25 vom: 30. Sept., Seite 2178-89
1. Verfasser: Larsson, Henrik R (VerfasserIn)
Weitere Verfasser: van Duin, Adri C T, Hartke, Bernd
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article evolutionary algorithms force-field fitting genetic algorithms global optimization reactive force fields
Beschreibung
Zusammenfassung:Copyright © 2013 Wiley Periodicals, Inc.
We have used unbiased global optimization to fit a reactive force field to a given set of reference data. Specifically, we have employed genetic algorithms (GA) to fit ReaxFF to SiOH data, using an in-house GA code that is parallelized across reference data items via the message-passing interface (MPI). Details of GA tuning turn-ed out to be far less important for global optimization efficiency than using suitable ranges within which the parameters are varied. To establish these ranges, either prior knowledge can be used or successive stages of GA optimizations, each building upon the best parameter vectors and ranges found in the previous stage. We have finally arrive-ed at optimized force fields with smaller error measures than those published previously. Hence, this optimization approach will contribute to converting force-field fitting from a specialist task to an everyday commodity, even for the more difficult case of reactive force fields
Beschreibung:Date Completed 25.02.2014
Date Revised 20.08.2013
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1096-987X
DOI:10.1002/jcc.23382