Deep learning with hierarchical convolutional factor analysis

Unsupervised multilayered (“deep”) models are considered for imagery. The model is represented using a hierarchical convolutional factor-analysis construction, with sparse factor loadings and scores. The computation of layer-dependent model parameters is implemented within a Bayesian setting, employ...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 35(2013), 8 vom: 19. Aug., Seite 1887-901
1. Verfasser: Chen, Bo (VerfasserIn)
Weitere Verfasser: Polatkan, Gungor, Sapiro, Guillermo, Blei, David, Dunson, David, Carin, Lawrence
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM228521270
003 DE-627
005 20240323232426.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2013.19  |2 doi 
028 5 2 |a pubmed24n1342.xml 
035 |a (DE-627)NLM228521270 
035 |a (NLM)23787342 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Bo  |e verfasserin  |4 aut 
245 1 0 |a Deep learning with hierarchical convolutional factor analysis 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 17.02.2014 
500 |a Date Revised 23.03.2024 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Unsupervised multilayered (“deep”) models are considered for imagery. The model is represented using a hierarchical convolutional factor-analysis construction, with sparse factor loadings and scores. The computation of layer-dependent model parameters is implemented within a Bayesian setting, employing a Gibbs sampler and variational Bayesian (VB) analysis that explicitly exploit the convolutional nature of the expansion. To address large-scale and streaming data, an online version of VB is also developed. The number of dictionary elements at each layer is inferred from the data, based on a beta-Bernoulli implementation of the Indian buffet process. Example results are presented for several image-processing applications, with comparisons to related models in the literature 
650 4 |a Journal Article 
700 1 |a Polatkan, Gungor  |e verfasserin  |4 aut 
700 1 |a Sapiro, Guillermo  |e verfasserin  |4 aut 
700 1 |a Blei, David  |e verfasserin  |4 aut 
700 1 |a Dunson, David  |e verfasserin  |4 aut 
700 1 |a Carin, Lawrence  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 35(2013), 8 vom: 19. Aug., Seite 1887-901  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:35  |g year:2013  |g number:8  |g day:19  |g month:08  |g pages:1887-901 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2013.19  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2013  |e 8  |b 19  |c 08  |h 1887-901