Deep learning with hierarchical convolutional factor analysis

Unsupervised multilayered (“deep”) models are considered for imagery. The model is represented using a hierarchical convolutional factor-analysis construction, with sparse factor loadings and scores. The computation of layer-dependent model parameters is implemented within a Bayesian setting, employ...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 35(2013), 8 vom: 19. Aug., Seite 1887-901
1. Verfasser: Chen, Bo (VerfasserIn)
Weitere Verfasser: Polatkan, Gungor, Sapiro, Guillermo, Blei, David, Dunson, David, Carin, Lawrence
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Unsupervised multilayered (“deep”) models are considered for imagery. The model is represented using a hierarchical convolutional factor-analysis construction, with sparse factor loadings and scores. The computation of layer-dependent model parameters is implemented within a Bayesian setting, employing a Gibbs sampler and variational Bayesian (VB) analysis that explicitly exploit the convolutional nature of the expansion. To address large-scale and streaming data, an online version of VB is also developed. The number of dictionary elements at each layer is inferred from the data, based on a beta-Bernoulli implementation of the Indian buffet process. Example results are presented for several image-processing applications, with comparisons to related models in the literature
Beschreibung:Date Completed 17.02.2014
Date Revised 23.03.2024
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2013.19